Most-cited chemistry papers published a decade ago

C&EN and CAS look back at high-impact research from 2006

Lauren K. Wolf

A scanning electron microscope image of graphene flakes.

Credit: Capkuckokos/Wikimedia Commons

Title: Graphene-based composite materials

Reference: Nature, DOI: 10.1038/nature04969

Number of citations: 6,196

Senior authors: SonBinh T. Nguyen and Rodney S. Ruoff

Affiliation in 2006: Northwestern University

Description of work: Ruoff had predicted that graphene sheets, or flakes, could be used as “filler” in electrically conducting polymer composites. The problem was that these flakes only dispersed in water-based solutions, making their incorporation into organic polymers difficult. So, along with Nguyen and coworkers, Ruoff reported in 2006 a method to chemically modify flakes of graphene oxide and disperse them in polymers such as polystyrene.

Impact of work: “I think the paper has been highly cited because others have learned that dispersing graphene into various matrix materials has led to a range of composites with interesting properties,” says Ruoff, who is currently at Ulsan National Institute of Science & Technology. “For example, there are now commercial products such as polymer fibers with small percentages of graphene flake mixed in that have significantly improved mechanical properties.”


Induced pluripotent stem cells (less than 100 µm) derived from human skin.

Credit: Science Source

Title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors

Reference: Cell, DOI: 10.1016/j.cell.2006.07.024

Number of citations: 7,384

Senior authors: Kazutoshi Takahashi and Shinya Yamanaka

Affiliation: Kyoto University

Description of work: Up until 2006, scientists studying human development and regenerative medicine could source pluripotent stem cells only from embryos—an ethical dilemma for many. That year, Yamanaka and Takahashi changed everything: They reported a method to convert human skin cells into stem cells capable of transforming into any type of cell in the body. These “induced pluripotent stem cells” (iPSs), created by activating just four genes, earned Yamanaka the 2012 Nobel Prize in Physiology or Medicine.

Impact of work: A citation on states that “Yamanaka’s discovery has opened up a completely new research field, and the astonishingly simple iPS technology is now used in a large number of laboratories around the world.”


Grimme’s correction to DFT enabled more accurate simulations of substances such as water.

Credit: Science Source

Title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction

Reference: J. Comp. Chem., DOI: 10.1002/jcc.20495

Number of citations: 7,480

Senior author: Stefan Grimme

Affiliation in 2006: University of Münster

Description of work: Computational chemists use density functional theory (DFT) to calculate the electronic structure of multiatom systems. In 2006, this method didn’t work well for large molecules and condensed matter such as organic solids and liquids. In this paper, Grimme reported a fix for the problem: He developed a correction that could describe long-range dispersion interactions such as van der Waals forces between atoms. It enabled, among other things, DFT to more accurately simulate water and crystalline forms of drugs.

Impact of work: It wasn’t a particularly clever idea, but it was the first paper to make the correction in a “generally useable way,” says Grimme, who is now at the University of Bonn. “The other reason it’s so heavily cited is that widely used quantum chemistry software packages implemented this functional in their code rather early on.”

Source: To count citations, CAS, a division of the American Chemical Society, performed a search of its CAplus database using its STN search tool in mid-December 2016.

Leave a comment